Author: Falyn Eisiminger

Biegler, L. T., Kim, Y., Lin, K.-H., & Thierry, D. M. (2021, June 13-16). Advanced-multi-step Moving Horizon Estimation [Conference presentation]. 11th IFAC International Symposium on Advanced Control of Chemical Processes (ADCHEM 2021), Virtual.

Lee, A., Ghouse, J. H., Eslick, J.C., Laird, C.D., Siirola, J.D., Zamarripa, M.A., Gunter, D., Shinn, J. H., Dowling, A. W., Bhattacharyya, D., Biegler, L. T., Burgard, A. P., & Miller, D.C. (2021). The IDAES process modeling framework and model library—Flexibility for process simulation and optimization. Journal of Advanced Manufacturing and Processing, 3(3), 1-30. https://doi.org/10.1002/amp2.10095

Bynum, M. L., Castillo, A., Kneuven, B., Laird, C. D., Siirola, J. D., Watson, & J. P. (2021). Decomposing optimization-based bounds tightening problems via graph partitioning. Journal of Global Optimization. https://www.osti.gov/biblio/1834338

Isenberg, N.M., Akula, P., Eslick, J.C., Bhattacharyya, D., Miller, D. C., & Gounaris, C. E. (2021). A generalized cutting-set approach for nonlinear robust optimization in process systems engineering applications. AIChE Journal, 67(5). https://doi.org/10.1002/aic.17175

Kim, Y., Thierry, D. M., & Biegler, L. T. (2020). Serial advanced-multi-step nonlinear model predictive control using an extended sensitivity method. J. Process Control, 96, 82-93. https://doi.org/10.1016/j.jprocont.2020.11.002

Sarwar, O., Sauk, B., & Sahinidis, N. V. (2020). A discussion on practical considerations with sparse regression methodologies. Statistical Science, 35(4) 593-601. https://doi.org/10.48550/arXiv.2011.09362

Parker, R., & Biegler, L. T. (2020, November 16-20). Nonlinear programming strategies for optimization of dynamic chemical looping reactor models [Paper presentation]. 2020 AIChE Annual, Virtual. https://www.aiche.org/academy/conferences/aiche-annual-meeting/2020/proceeding/paper/596a-nonlinear-programming-strategies-optimization-dynamic-chemical-looping-reactor-models

Eason, J. P., & Biegler, L. T. (2020). Model order reduction in chemical process optimization. In Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., & Silveira, L. M. (Eds.), Model Order Reduction. Volume 3: Applications, (pp. 1-32). De Gruyter. https://doi.org/10.1515/9783110499001-001

Biegler, L.T. (2020). Nonlinear optimization strategies for process separations and process intensification. Chemie Ingenieur Technik, 92(7), 867-878. https://doi.org/10.1002/cite.202000014

Lin, K.-H., Eason, J. P., Yu, Z. & Biegler, L. T. (2020). Nonlinear model predictive control of the hydraulic fracturing process. IFAC-PapersOnLine, 53(2), 11428-11433. https://doi.org/10.1016/j.ifacol.2020.12.579

Scroll to Top