Author: Falyn Eisiminger
Rodriguez, J.S., Nicholson, B., Laird, C.D., & Zavala, V.M. (2018). Benchmarking ADMM in nonconvex NLPs. Computers & Chemical Engineering, 119, 315-325. https://doi.org/10.1016/j.compchemeng.2018.08.036
Sauk, B., Ploskas, N., & Sahinidis, N. (2018). GPU parameter tuning for tall and skinny dense linear least squares problems. Optimization Methods and Software, 35(3), 638-660. https://doi.org/10.1080/10556788.2018.1527331
Lara, C.L., Mallapragada, D., Papageorgiou D., Venkatesh, A., & Grossmann, I. E. (2018). Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research, 271(3), 1037-1054. https://doi.org/10.1016/j.ejor.2018.05.039
Nicholson, B.L., & Siirola, J. D. (2018). A framework for modeling and optimizing dynamic systems under uncertainty. Computers & Chemical Engineering, 114, 81-88. https://doi.org/10.1016/j.compchemeng.2017.11.003
Chen, Q., & Grossmann, I.E. (2018). Effective GDP optimization models for modular process synthesis. Current Opinion in Chemical Engineering. http://egon.cheme.cmu.edu/Papers/Chen_Qi_modular_updated.pdf
Nicholson, B.L., Siirola, J. D., Watson, J.-P., Zavala, V. M., & Biegler, L.T. (2018). Pyomo.dae: A modeling and automatic discretization framework for optimization with differential and algebraic equations. Math Programming Computation, 10, 187-223. https://doi.org/10.1007/s12532-017-0127-0
Nicholson, B.L. and J.D. Siirola, A Framework for Modeling and Optimizing Dynamic Systems Under Uncertainty. In press, special FOCAPO/CPC issue of Computers & Chemical Engineering (2017)
Hanselman, C. L., & Gounaris, C. E. (2016). A mathematical optimization framework for the design of nanopatterned surfaces. AIChE Journal, 62(9), 3250-3263. https://doi.org/10.1002/aic.15359