Category: 2021 Publications
Sauk, B., & Sahinidis, N. V. (2021). HybridTuner: Tuning with hybrid derivative-free optimization initialization strategies. In Simos, D.E., Pardalos, P.M., & Kotsireas, I.S. (Eds.), LION 2021: Learning and Intelligent Optimization, Lecture Notes in Computer Science 12931, (pp. 379-393). https://doi.org/10.1007/978-3-030-92121-7_29
Yeonsoo Kim, Y., Kuan-Han Lin, K.-H., Thierry, D. M., & Biegler, L. T. (2021). Advanced-multi-step Moving Horizon Estimation. IFAC-PapersOnLine, 54(3), 269-274. https://doi.org/10.1016/j.ifacol.2021.08.253
Sauk, B., & Sahinidis, N. V. (2021). Backward stepwise elimination: Approximation guarantee, a batched GPU algorithm, and empirical investigation. SN Computer Science, 2. https://doi.org/10.1007/s42979-021-00788-1
Akula, P., Eslick, J., Bhattacharyya, D., & Miller, D. C. (2021). Model development, validation, and part-load optimization of an MEA-based post-combustion CO2 capture process under part-load and variable capture operations. Industrial & Engineering Chemistry Research, 60(14), 5176–5193. https://doi.org/10.1021/acs.iecr.0c05035
Biegler, L.T. (2022). A perspective on nonlinear model predictive control. Korean Journal of Chemical Engineering, 38, 1317–1332. https://doi.org/10.1007/s11814-021-0791-7
Lee, A., Ghouse, J. H., Eslick, J.C., Laird, C.D., Siirola, J.D., Zamarripa, M.A., Gunter, D., Shinn, J. H., Dowling, A. W., Bhattacharyya, D., Biegler, L. T., Burgard, A. P., & Miller, D.C. (2021). The IDAES process modeling framework and model library—Flexibility for process simulation and optimization. Journal of Advanced Manufacturing and Processing, 3(3), 1-30. https://doi.org/10.1002/amp2.10095
Bynum, M. L., Castillo, A., Kneuven, B., Laird, C. D., Siirola, J. D., Watson, & J. P. (2021). Decomposing optimization-based bounds tightening problems via graph partitioning. Journal of Global Optimization. https://www.osti.gov/biblio/1834338
Isenberg, N.M., Akula, P., Eslick, J.C., Bhattacharyya, D., Miller, D. C., & Gounaris, C. E. (2021). A generalized cutting-set approach for nonlinear robust optimization in process systems engineering applications. AIChE Journal, 67(5). https://doi.org/10.1002/aic.17175